Ice water path retrievals from Meteosat-9 using quantile regression neural networks
نویسندگان
چکیده
Abstract. The relationship between geostationary radiances and ice water path (IWP) is complex, traditional retrieval approaches are not optimal. This work applies machine learning to improve the IWP from Meteosat-9 observations, with a focus on low latitudes, training models against retrievals based CloudSat. Advantages of include avoiding explicit physical assumptions data, an efficient use information all channels, easily leveraging spatial information. Thermal infrared (IR) used as input achieve performance independent solar angle. They compared including reflectances well subset IR channels for compatibility historical sensors. accomplished quantile regression neural networks. network type provides case-specific uncertainty estimates, compatible non-Gaussian errors, flexible enough be applied different architectures. Spatial incorporated into through convolutional (CNN) architecture. choice outperforms architectures that only pixelwise. In fact, CNN shows good by using channels. makes it possible compute diurnal cycles, problem CloudSat cannot resolve due its limited temporal sampling. These compare favourably in CLAAS, dataset approach. results highlight possibilities overcome limitations physics-based while providing efficient, probabilistic methods. Moreover, they suggest this first can extended higher latitudes data considered complement upcoming Ice Cloud Imager mission, example, bridge gap sampling respect space-based radars.
منابع مشابه
rodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Estimation of Industrial Production Costs, Using Regression Analysis, Neural Networks or Hybrid Neural - Regression Method?
Estimation (Forecasting) of industrial production costs is one of the most important factor affecting decisions in the highly competitive markets. Thus, accuracy of the estimation is highly desirable. Hibrid Regression Neural Network is an approach proposed in this paper to obtain better fitness in comparison with Regression Analysis and the Neural Network methods. Comparing the estimated resul...
متن کاملQuantile Regression using Metaheuristic Algorithms
This paper demonstrates that metaheuristic algorithms can provide a useful general framework for estimating both linear and nonlinear econometric models. Two metaheuristic algorithms—firefly and accelerated particle swarm optimization—are employed in the context of several quantile regression models. The algorithms are stable and robust to the choice of starting values and the presence of vario...
متن کاملestimation of industrial production costs, using regression analysis, neural networks or hybrid neural - regression method?
estimation (forecasting) of industrial production costs is one of the most important factor affecting decisions in the highly competitive markets. thus, accuracy of the estimation is highly desirable. hibrid regression neural network is an approach proposed in this paper to obtain better fitness in comparison with regression analysis and the neural network methods. comparing the estimated resul...
متن کاملEXTREMAL QUANTILE REGRESSION 3 quantile regression
Quantile regression is an important tool for estimation of conditional quantiles of a response Y given a vector of covariates X. It can be used to measure the effect of covariates not only in the center of a distribution, but also in the upper and lower tails. This paper develops a theory of quantile regression in the tails. Specifically , it obtains the large sample properties of extremal (ext...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Atmospheric Measurement Techniques
سال: 2022
ISSN: ['1867-1381', '1867-8548']
DOI: https://doi.org/10.5194/amt-15-5701-2022